Iniciar sessão

Navegar para Cima
A aplicação Web não foi encontrada em http://cvarg.azores.gov.pt/publicacoes. Verifique se escreveu o URL correctamente. Se o URL tiver de fornecer conteúdo existente, o administrador do sistema poderá ter de adicionar um novo mapeamento do URL do pedido à aplicação de destino.
A aplicação Web não foi encontrada em http://cvarg.azores.gov.pt/publicacoes. Verifique se escreveu o URL correctamente. Se o URL tiver de fornecer conteúdo existente, o administrador do sistema poderá ter de adicionar um novo mapeamento do URL do pedido à aplicação de destino.
Não é possível visualizar esta Peça Web. Para resolver o problema, abra esta página Web num editor de HTML compatível com o Microsoft SharePoint Foundation como, por exemplo, o Microsoft SharePoint Designer. Se o problema persistir, contacte o administrador do servidor Web.


ID de Correlação:914737ce-523d-42db-acef-4b2b4f64f0aa


Artigos em revistas ► internacionais com arbitragem

 

Referência Bibliográfica


MOTA, R., PACHECO, J.M., PIMENTEL, A., GIL, A. (2024). Monitoring Volcanic Plumes and Clouds Using Remote Sensing: a Systematic Review. Remote Sensing, 16(10): 1789, https://doi.org/10.3390/rs16101789.

Resumo


Volcanic clouds pose significant threats to air traffic, human health, and economic activity, making early detection and monitoring crucial. Accurate determination of eruptive source parameters is crucial for forecasting and implementing preventive measures. This review article aims to identify the most common remote sensing methods for monitoring volcanic clouds. To achieve this, we conducted a systematic literature review of scientific articles indexed in the Web of Science database published between 2010 and 2022, using multiple query strings across all fields. The articles were reviewed based on research topics, remote sensing methods, practical applications, case studies, and outcomes using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our study found that satellite-based remote sensing approaches are the most cost-efficient and accessible, allowing for the monitoring of volcanic clouds at various spatial scales. Brightness temperature difference is the most commonly used method for detecting volcanic clouds at a specified temperature threshold. Approaches that apply machine learning techniques help overcome the limitations of traditional methods. Despite the constraints imposed by spatial and temporal resolution and optical limitations of sensors, multiplatform approaches can overcome these limitations and improve accuracy. This study explores various techniques for monitoring volcanic clouds, identifies research gaps, and lays the foundation for future research.​

Observações


Anexos